Webb Therapy Uncategorized Understanding self-harm, self-injury, and self-destruction

Understanding self-harm, self-injury, and self-destruction

What is meant by self-harm?

Self-harm is any behaviour that involves the deliberate causing of pain or injury to oneself without the intention to end your life. Self-harm can include behaviours such as cutting, burning or hitting oneself, binge-eating or starvation, or repeatedly putting oneself in dangerous situations. It can also involve abuse of drugs or alcohol, including overdosing on prescription medications. Self-harm is usually a response to distress, whether it be from mental illness, trauma, or psychological pain. Some people find that the physical pain of self-harm helps provide temporary relief from emotional pain (extract from Self harm (lifeline.org.au)).

People who engage in self-harm will profess that they have no intention of dying and that their self-harming behaviour is a coping strategy, however, there are incidents of accidental suicide. The act of self-harm can develop into an obsessive-compulsion experience which can be very difficult to stop, like addiction, without outside intervention. This can result in feelings of hopelessness and possible suicidal thinking. Like building a tolerance to a drug, when self-injury does not relieve the tension or help control negative thoughts and feelings, the person may injure themselves more severely or may start to believe they can no longer control their pain and may consider suicide.

The following extract by Tracy Alderman Ph.D explains the physiological response to physical pain:

“Physiologically, endorphins are released when we are injured or stressed. Endorphins are neurotransmitters that act similarly to morphine and reduce the amount of pain we experience when we are hurt. Joggers often report experiencing a “runners high” when reaching a physically stressful period. This “high” is the physiological reaction to the release of endorphins – the masking of pain by a substance that mimics morphine. When people self-injure, the same process takes place. Endorphins are released which limit or block the amount of physical pain that’s experienced. Sometimes people who intentionally hurt themselves will even say that they felt a “rush” or “high” from the act. Given the role of endorphins, this makes perfect sense” (Oct 22, 2009).

Please click on the link for the full article Myths and Misconceptions of Self-Injury: Part II | Psychology Today Australia

The first step is to distinguish between self-harming and suicidal behaviour by paying attention to a person’s underlying motivation. When working with self-harming behaviour it is important to remember that this behaviour serves a purpose. In collaboration with the client, try to identify what problem self-harm solves for the client. For example, from the client’s perspective:

  • To make me feel real (counteracts dissociation)
  • To punish me (temporarily lessens guilt or shame)
  • To stop me from feeling (when strong feelings are too dangerous)
  • To mark the body (to show externally the internal scars)
  • To let something bad out (symbolic way to try to get rid of shame, pain, etc.)
  • To remember
  • To keep from hurting someone else (to control my behaviour and my anger)
  • To communicate (to let someone know how bad the pain is)
  • To express anger indirectly (to punish someone without getting them angry at me)
  • To reclaim control of the body (this time I’m in charge)
  • To feel better

Tips for helping yourself in the moment
It can be hard for people who self-harm to stop it by themselves. That’s why it’s important to get further help if needed; however, the ideas below may be helpful to start relieving some distress:

  • Intense exercise for 30 seconds, 30 second break, repeat, up to 15 minutes – Exercising intensely will help your body mitigate unpleasant energy that can sometimes be stored from strong emotions. Transfer this energy by running, walking at a fast pace, doing jumping jacks, etc. Exercise naturally releases endorphins which will help combat any negative emotions like anger, anxiety, or sadness.
  • Delay — put off self-harming behaviours until you have spoken to someone.
  • Distract — do some exercise, go for a walk, play a game, do something kind for yourself, play loud music or use positive coping strategies.
  • Deep breathing — or other relaxation methods.
  • Cool your body temperature – Cooler temperatures decrease your heart rate (which is usually faster when we are emotionally overwhelmed). You can either splash your face with cold water, take a cold (but not too cold) shower, or if the weather outside is chilly you can go outside for a walk. Another idea is to take an ice cube and hold it in your hand or rub your face with it.
  • Listen to loud music
  • Call someone you trust or one of the services available like LifeLine 13 11 14, MensLine Australia 1300 78 99 78 and BeyondBlue 1300 22 4636 [see below].
  • You could write an email to yourself to express your emotions, or journal your feelings, if that’s something that might be effective for you.
  • Watch humorous Youtube clips

New, healthier coping strategies may not be as effective as the one you’re trying to replace so it may take practice. Bring lots of compassion to yourself, okay.

You may find that some of these strategies work in some situations but not others, or you may find that you need to use a combination of these. It’s important to find what works for you. Also, remember that these are not long-term solutions to self-harm but rather, useful short-term alternatives for relieving distress.

Mental health services infographic

Related Post

There’s nothing ‘fake’ about ‘faking it until you make it’There’s nothing ‘fake’ about ‘faking it until you make it’

When to Fake It Till You Make It (and When You Shouldn’t)

Faking it for the right reasons can change you for the better. Here’s why.

Posted Jun 27, 2016By Amy Morin

One day, a client came to see me because she felt socially awkward. She knew that her inability to make small talk was holding her back both personally and professionally. As a shy person, she hated going to networking events. But making connections was vital to her career.I asked, “What do you usually do when you go to a networking event?” She said, “I stand awkwardly off to the side and wait to see if anyone will come talk to me.” I asked her, “What would you do differently if you felt confident?” and she said, “I’d initiate conversation and introduce myself to people.”

Right then and there, she discovered the solution to her problem: If she wanted to feel more confident, she had to act more confident. That wasn’t quite what she wanted to hear. She’d hoped for a solution that would immediately make her feel more confident. But the key to becoming more comfortable in social situations is practice.Her instinct was to wait until she felt more confident, but that confidence wasn’t going to magically appear out of thin air—especially if she was standing around by herself. However, if she started talking to people like a confident person, she’d have an opportunity to experience successful social interactions, and each of these would boost her confidence.

Acting “As If”

Acting “as if” is a common prescription in psychotherapy. It’s based on the idea that if you behave like the person you want to become, you’ll become like this in reality:

1. If you want to feel happier, do what happy people do—smile.

2. If you want to get more work done, act as if you are a productive person.

3. If you want to have more friends, behave like a friendly person.

4. If you want to improve your relationship, practice being a good partner.Too often we hesitate to spring into action. Instead, we wait until everything feels just right or until we think we’re ready. But research shows that changing your behavior first can change the way you think and feel.

The Biggest Mistake Most People Make

Faking it until you make it only works when you correctly identify something within yourself that’s holding you back. Behaving like the person you want to become is about changing the way you feel and the way you think.If your motives are to prove your worth to other people, however, your efforts won’t be successful, and research shows that this approach actually backfires. A study published in the Journal of Consumer Research found that people who tried to prove their worth to others were more likely to dwell on their shortcomings. Ambitious professionals who wore luxury clothing in an effort to appear successful, and MBA students who wore Rolex watches to increase their self-worth just ended up feeling like bigger failures. Even worse, their attempts to project an image of success impaired their self-control. They struggled to resist temptation when they tried to prove that they were successful. Putting so much effort into faking it used up their mental resources and interfered with their ability to make good choices.

How to “Fake It” the Right Way

Acting “as if” doesn’t mean being phony or inauthentic. It’s about changing your behavior first and trusting the feelings will follow. As long as your motivation is in the right place, faking it until you make it can effectively make your goals become reality. Just make sure you’re interested in changing yourself on the inside, not simply trying to change other people’s perceptions of you.

Addiction – What You Need To KnowAddiction – What You Need To Know

Addiction fundamentally alters the brain’s reward and decision-making systems through well-documented neurobiological mechanisms. When substances like drugs (including alcohol and nicotine) are consumed, they trigger massive releases of dopamine in the brain’s reward circuit, particularly in areas like the nucleus accumbens and ventral tegmental area. With repeated exposure, the brain adapts by reducing natural dopamine production and decreasing the number of dopamine receptors, creating tolerance and requiring increasingly larger amounts of the substance to achieve the same effect. This neuroadaptation hijacks the brain’s natural reward system, making everyday activities less rewarding while the addictive substance becomes disproportionately important.

Over time, addiction also impairs the prefrontal cortex, the brain region responsible for executive functions like decision-making, impulse control, and weighing long-term consequences. This creates a neurological double-bind: the midbrain structures driving craving and drug-seeking behaviour become hyperactive, while the prefrontal systems that would normally regulate these impulses become weakened. Chronic substance use also disrupts stress response systems, making individuals more vulnerable to relapse during difficult periods. These changes help explain why addiction is recognised as a chronic brain disease rather than simply a matter of willpower – the neuroplastic changes can persist long after substance use stops, though the brain does have remarkable capacity for recovery with sustained abstinence and appropriate treatment.

The Challenge of Stopping

The challenge of stopping stems from the profound neurobiological changes addiction creates in the brain’s fundamental survival systems. The brain essentially learns to treat the addictive substance as necessary for survival, similar to food or water. When someone tries to quit, they face intense physical withdrawal symptoms as their neurochemistry struggles to return to homeostasis, combined with psychological cravings that can persist for months or years. The damaged prefrontal cortex makes it extremely difficult to override these powerful urges with rational decision-making, while stress, environmental cues, and emotional states can trigger automatic drug-seeking responses that feel almost involuntary. This creates a cycle where attempts to quit often lead to temporary success followed by relapse, which many interpret as personal failure rather than recognising it as part of the neurological reality of the condition.

Addiction appears progressive because tolerance drives escalating use over time, while the brain’s reward system becomes increasingly dysregulated. What begins as recreational use gradually shifts to compulsive use as natural dopamine production diminishes and neural pathways become more deeply entrenched. The condition typically follows a predictable pattern: initial experimentation leads to regular use, then to use despite negative consequences, and finally to compulsive use where the person continues despite severe impairment in major life areas. Additionally, chronic substance use often damages the brain regions responsible for insight and self-awareness, making it harder for individuals to recognise the severity of their condition. The progressive nature is also influenced by external factors – as addiction advances, people often lose social supports, employment, and housing, creating additional stressors that fuel continued use and make recovery more challenging.

Understanding addiction when you’re not “addicted” to alcohol or other drugs

The difficulty in understanding addiction, even among people with their own compulsive behaviors, stems from several key differences in how these conditions manifest and are perceived. While behaviors like sugar consumption, social media use, or shopping can indeed activate similar dopamine pathways, they typically don’t create the same level of neurobiological hijacking that occurs with substances like alcohol, opioids, or stimulants. Addictive drugs often produce dopamine surges 2-10 times greater than natural rewards, creating more profound and lasting changes to brain structure and function. Additionally, many behavioral compulsions allow people to maintain relatively normal functioning in major life areas, whereas substance addiction typically leads to progressive deterioration across multiple domains – relationships, work, health, and legal standing.

The social and cognitive factors also create barriers to understanding. Most people can relate to losing control occasionally – eating too much dessert or spending too much time scrolling their phone – but these experiences usually involve temporary lapses that can be corrected relatively easily through willpower or environmental changes. This creates a false sense of equivalency where people think “I can stop eating cookies when I want to, so why can’t they just stop drinking?” They don’t grasp that addiction involves a qualitatively different level of brain change where the substance has become neurobiologically essential, not just psychologically preferred. There’s also often a moral lens applied to addiction that doesn’t exist for other compulsive behaviours – society tends to view overconsumption of legal, socially acceptable things as personal quirks or minor character flaws, while addiction to illegal substances or excessive alcohol use carries heavy stigma and assumptions about moral failing, making it harder to see as a medical condition requiring treatment rather than simply better self-control.

A Word On Nicotine (Tobacco Products)

Yes, nicotine absolutely does release large amounts of dopamine, making it highly addictive despite being legal and socially accepted in many contexts. Nicotine causes an increase in dopamine levels in the brain’s reward pathways, creating feelings of satisfaction and pleasure.Research shows that nicotine, like opioids and cocaine, can cause dopamine to flood the reward pathway up to 10 times more than natural rewards.

This helps explain why nicotine addiction can be so powerful and difficult to overcome, even though people often view smoking or vaping as less serious than other forms of substance addiction. Repeated activation of dopamine neurons in the ventral tegmental area by nicotine leads not only to reinforcement but also to craving and lack of self-control over intake. The addiction develops through the same basic mechanisms as other substances – as people continue to smoke, the number of nicotine receptors in the brain increases, requiring more of the substance to achieve the same dopamine response.

What makes nicotine particularly insidious is its legal status and social acceptance, which can make people underestimate its addictive potential. The rapid delivery of nicotine to the brain (within 10-20 seconds when smoked) creates an almost immediate reward that strongly reinforces the behaviour. This is why many people who successfully quit other substances still struggle with nicotine, and why nicotine addiction often serves as a gateway that primes the brain’s reward system for addiction to other substances.

Understanding Addiction: A Modern, Integrative PerspectiveUnderstanding Addiction: A Modern, Integrative Perspective

Abstract

Addiction is a complex, multifaceted phenomenon that has been described variously as a disease, disorder, syndrome, obsessive-compulsive behaviour, learned behaviour, or spiritual malady. Modern scientific understanding emphasises addiction as a chronic brain disorder shaped by neurobiological changes, learning, and social context. This article examines each conceptualisation and presents an integrated definition that aligns with current neuroscience, psychological, and public health evidence.

Conceptualising Addiction: Labels and Their Accuracy

No single label fully captures addiction’s complexity; each highlights certain truths while overlooking others.

Disease

From a medical perspective, disease is the closest match. Addiction involves persistent neurobiological changes in reward, stress, and self-control circuits, increases relapse risk over years, and shows substantial genetic vulnerability (~50–60%) (NIDA, 2018; Heilig et al., 2021). Treatments improve outcomes but rarely “cure” the condition. This framing is used by the American Society of Addiction Medicine (ASAM), NIDA, WHO ICD-11, and DSM-5-TR (as “Substance Use Disorder”) (NIDA, 2018).

Disorder

Disorder is also scientifically accurate and slightly less medicalised. DSM-5’s “Substance Use Disorder” captures behavioural, psychological, and biological criteria and recognises functioning and harm rather than framing addiction strictly as a lifelong disease (Heather, n.d.; Heilig et al., 2021).

Syndrome

Addiction may be described as a syndrome because it is a cluster of symptoms with behavioural and physiological manifestations, without a single causative factor. However, the term is too generic for practical use outside clinical texts (Blithikioti et al., 2025).

Obsessive and Compulsive Learned Behaviour

Addiction involves learning, habit formation, and compulsion through reinforcement of rewarding behaviours (Hyman, 2005; Hausotter, 2013). Yet describing it solely as learned behaviour ignores genetic predisposition, neuroadaptation, withdrawal, and social factors.

Spiritual Malady

Some mutual-aid traditions characterise addiction as a spiritual malady. While this may be meaningful for individuals, it is not scientifically explanatory: addiction can be adequately explained via biological, psychological, and social mechanisms (Lewis, 2017).

Modern Integrative Definition

The most accurate contemporary description of addiction is:
“A chronic, relapsing disorder of brain circuits involved in reward, stress, and self-control, shaped by learning, environment, and social context”.

This definition encompasses:

  • Disease/disorder: medical accuracy
  • Learned behaviour and compulsion: neuroscience and behavioural accuracy
  • Social determinants: public health relevance
  • Flexibility for personal or spiritual interpretations

In short, addiction is best understood as a bio-psycho-social condition that is treatable and sometimes reversible, rather than a deterministic, lifelong curse.

Neurobiology: Why Addiction Is Considered a Brain Disorder

Repeated substance use alters structural and functional brain circuits involved in reward, stress, motivation, memory, and self-control (Nwonu et al., 2022; NIDA, 2018). These changes can persist long after use stops, explaining why addiction is more than a matter of “bad habits” or weak will (NIDA, 2025).

Chronicity and Relapse

Addiction is often chronic and relapsing. Even after long periods of abstinence, cues and stressors can trigger relapse (Meurk et al., 2014; SAMHSA, 2023). Key regions implicated include the basal ganglia (habit formation), extended amygdala (stress), and prefrontal cortex (decision-making) (Kirby et al., 2024). Nevertheless, many individuals achieve stable remission, highlighting heterogeneity in clinical outcomes (Heilig et al., 2021).

Learning, Memory, and Habit Formation

Addiction exploits neural mechanisms of learning and memory: rewarding behaviours are repeated and consolidated into habits, with cues triggering compulsive responses even when the substance’s reward diminishes (Hausotter, 2013; Lewis, 2017). This intertwines biological disorder and learned behaviour.

Critiques and Limitations

Some scientists caution that framing addiction strictly as a brain disease is simplistic:

  • Brain changes may resemble those from other motivated behaviours (Lewis, 2017).
  • Many recover without formal treatment (Heilig et al., 2021).
  • Social, environmental, and psychological factors are crucial to understanding addiction (Blithikioti et al., 2025).

Thus, while the disease model is powerful, it does not fully represent addiction’s heterogeneity or socio-psychological dimensions.

Implications for Treatment

Addiction is treatable, not simply curable. Interventions combining pharmacological and behavioural approaches, alongside social support, can foster long-term recovery (Liu & Li, 2018; Heilig et al., 2021). Like other chronic conditions, management — rather than elimination — is often the realistic goal (NIDA, 2018). Neural circuits can gradually readjust, particularly when environmental and personal factors support recovery.

Conclusion

Addiction is a learned, compulsive brain disorder with chronic potential, shaped by neurobiological, psychological, social, and environmental factors. Recognising addiction as both a disorder and a behavioural learning condition avoids extremes: it is neither an unchangeable fate nor merely a moral failing. This integrated perspective supports nuanced understanding, compassionate care, and effective treatment strategies.


References

Blithikioti, C., Fried, E. I., Albanese, E., Field, M., & Cristea, I. A. (2025). Reevaluating the brain disease model of addiction. The Lancet Psychiatry, 12(6), 469–474. https://doi.org/10.1016/S2215-0366(25)00060-4

Hausotter, W. (2013). Neuroscience and understanding addiction. Addiction Technology Transfer Center (ATTC) Network. https://attcnetwork.org/neuroscience-and-understanding-addiction

Heather, N. (n.d.). What’s wrong with the brain disease model of addiction (BDMA)? Addiction Theory Network. https://addictiontheorynetwork.org/brain-disease-model-of-addiction

Heilig, M., MacKillop, J., Martinez, D., Rehm, J., Leggio, L., & Vanderschuren, L. J. M. J. (2021). Addiction as a brain disease revised: Why it still matters, and the need for consilience. Neuropsychopharmacology, 46(10), 1715–1723. https://doi.org/10.1038/s41386-020-00950-y

Hyman, S. E. (2005). Addiction: A disease of learning and memory. The American Journal of Psychiatry, 162(8), 1414–1422. https://doi.org/10.1176/appi.ajp.162.8.1414

Kirby, E. D., Glenn, M. J., Sandstrom, N. J., & Williams, C. L. (2024). Neurobiology of addiction (Section 14.5). In Introduction to Behavioral Neuroscience. OpenStax. https://socialsci.libretexts.org/…/14.05:_Neurobiology_of_Addiction

Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science, 278(5335), 45–47. https://doi.org/10.1126/science.278.5335.45

Lewis, M. (2017). Addiction and the brain: Development, not disease. Neuroethics, 10(1), 7–18. https://doi.org/10.1007/s12152-016-9293-4

Liu, J. F., & Li, J. X. (2018). Drug addiction: A curable mental disorder? Acta Pharmacologica Sinica, 39(12), 1823–1829. https://doi.org/10.1038/s41401-018-0180-x

Meurk, C., Carter, A., Partridge, B., Lucke, J., & Hall, W. (2014). How is acceptance of the brain disease model of addiction related to Australians’ attitudes towards addicted individuals and treatments for addiction? BMC Psychiatry, 14, 373. https://doi.org/10.1186/s12888-014-0373-x

National Institute on Drug Abuse. (2018). Drugs, brains, and behavior: The science of addiction (Rev. ed.). https://irp.nida.nih.gov/…/NIDA_DrugsBrainsAddiction

Nwonu, C. N. S., Nwonu, P. C., & Ude, R. A. (2022). Neurobiological underpinnings in drug addiction. West African Journal of Medicine, 39(6), 874–884. https://pubmed.ncbi.nlm.nih.gov/36063103

Substance Abuse and Mental Health Services Administration. (2023). What is substance use disorder? U.S. Department of Health and Human Services. https://www.samhsa.gov/substance-use/what-is-sud