Webb Therapy Uncategorized Three rules for identifying abnormal child sexual behaviours

Three rules for identifying abnormal child sexual behaviours

Retrieved and edited 06/12/2021 from “Voice of Experience: Three rules for identifying abnormal child sexual behaviors” by Gregory K. Moffatt, a veteran counsellor with more than 30 years experience. If you are a survivor of sexual trauma at any age, I encourage you not to read this article.

From the perspective of Moffatt’s professional experience, childhood sexual behaviours can be grouped into three categories: 1. normal behaviours, 2. behaviours that are not normal but not unusual, and 3. behaviours that are abnormal or statistically rare. For the purpose of this post, I will be replacing the word “normal” with “natural” and/or “common” moving forward.


Rule No. 1: Natural or common sexual behaviours in children are never forced. The exploration is mutual. While one child likely had the idea first, both children must participate freely. This doesn’t mean that two children might willingly agree to engage in abnormal sexual behaviours, however, therefore read the next to rules for clarification.


Rule No. 2: Natural or common sexual behaviours in children are never painful. Children who behave within cultural and developmental norms will stop what they are doing when they realise they have caused pain.


Rule No. 3: Natural or common sexual behaviour in children is never invasive. Natural childhood curiosity does not include inserting objects or one’s own body parts into the cavities of others — anus, vagina, mouth, etc.


I’m unsure why Moffatt didn’t make this a 4th rule – he did add that most of the time, this type of childhood behaviour occurs between children of similar age. It is highly unusual for a young child to sexually engage with a teen without violating one of the three rules above. That behaviour definitely calls for further investigation. And, certainly, any sexual interaction between an adult and a child is cause for mandated reporting.

Related Post

Eating Disorders DSM-5Eating Disorders DSM-5

Psychologists believe that the core issues of anorexia nervosa and bulimia nervosa are multifaceted, involving a combination of biological, psychological, and social factors. Here are some of the key issues:

Anorexia Nervosa

  1. Distorted Body Image: Individuals with anorexia often have a distorted perception of their body size and shape, seeing themselves as overweight even when they are underweight.
  2. Intense Fear of Gaining Weight: There is an overwhelming fear of gaining weight or becoming fat, which drives restrictive eating behaviors.
  3. Control Issues: Anorexia can be a way for individuals to exert control over their lives, especially if they feel powerless in other areas.
  4. Perfectionism: Many individuals with anorexia have perfectionistic tendencies, striving for an unattainable ideal of thinness.
  5. Emotional Regulation: Restricting food intake can be a way to manage or numb difficult emotions and stress.

Bulimia Nervosa

  1. Binge-Purge Cycle: Bulimia is characterized by cycles of binge eating followed by purging behaviors such as vomiting, excessive exercise, or misuse of laxatives.
  2. Body Dissatisfaction: Similar to anorexia, individuals with bulimia often have a negative body image and are preoccupied with their weight and shape.
  3. Impulsivity: Bulimia is often associated with impulsive behaviors and difficulties in regulating emotions.
  4. Shame and Guilt: After binge eating, individuals with bulimia often feel intense shame and guilt, which perpetuates the cycle of purging3.
  5. Co-occurring Mental Health Issues: Anxiety, depression, and other mental health disorders are commonly seen in individuals with bulimia.

Both disorders are complex and can have severe physical and psychological consequences. Treatment typically involves addressing these core issues through therapy, medical monitoring, nutritional counselling, and support groups.

Sigmund Freud’s classic Defence Mechanism’sSigmund Freud’s classic Defence Mechanism’s

Projection: Attributing one’s unacceptable feelings or desires to someone else. For example, if a bully constantly ridicules a peer about insecurities, the bully might be projecting his own struggle with self-esteem onto the other person.

Denial: Refusing to recognize or acknowledge real facts or experiences that would lead to anxiety. For instance, someone with substance use disorder might not be able to clearly see his problem.

Repression: Blocking difficult thoughts from entering into consciousness, such as a trauma survivor shutting out a tragic experience.

Regression: Reverting to the behaviour or emotions of an earlier developmental stage.

Rationalization: Justifying a mistake or problematic feeling with seemingly logical reasons or explanations.

Displacement: Redirecting an emotional reaction from the rightful recipient to another person altogether. For example, if a manager screams at an employee, the employee doesn’t scream back—but the employee may yell at her partner later that night.

Reaction Formation: Behaving or expressing the opposite of one’s true feelings. For instance, a man who feels insecure about his masculinity might act overly aggressive.

Sublimation: Channelling sexual or unacceptable urges into a productive outlet, such as work or a hobby.

Intellectualization: Focusing on the intellectual rather than emotional consequences of a situation. For example, if a roommate unexpectedly moved out, the other person might conduct a detailed financial analysis rather than discussing their hurt feelings.

Compartmentalization: Separating components of one’s life into different categories to prevent conflicting emotions.

Addiction – What You Need To KnowAddiction – What You Need To Know

Addiction fundamentally alters the brain’s reward and decision-making systems through well-documented neurobiological mechanisms. When substances like drugs (including alcohol and nicotine) are consumed, they trigger massive releases of dopamine in the brain’s reward circuit, particularly in areas like the nucleus accumbens and ventral tegmental area. With repeated exposure, the brain adapts by reducing natural dopamine production and decreasing the number of dopamine receptors, creating tolerance and requiring increasingly larger amounts of the substance to achieve the same effect. This neuroadaptation hijacks the brain’s natural reward system, making everyday activities less rewarding while the addictive substance becomes disproportionately important.

Over time, addiction also impairs the prefrontal cortex, the brain region responsible for executive functions like decision-making, impulse control, and weighing long-term consequences. This creates a neurological double-bind: the midbrain structures driving craving and drug-seeking behaviour become hyperactive, while the prefrontal systems that would normally regulate these impulses become weakened. Chronic substance use also disrupts stress response systems, making individuals more vulnerable to relapse during difficult periods. These changes help explain why addiction is recognised as a chronic brain disease rather than simply a matter of willpower – the neuroplastic changes can persist long after substance use stops, though the brain does have remarkable capacity for recovery with sustained abstinence and appropriate treatment.

The Challenge of Stopping

The challenge of stopping stems from the profound neurobiological changes addiction creates in the brain’s fundamental survival systems. The brain essentially learns to treat the addictive substance as necessary for survival, similar to food or water. When someone tries to quit, they face intense physical withdrawal symptoms as their neurochemistry struggles to return to homeostasis, combined with psychological cravings that can persist for months or years. The damaged prefrontal cortex makes it extremely difficult to override these powerful urges with rational decision-making, while stress, environmental cues, and emotional states can trigger automatic drug-seeking responses that feel almost involuntary. This creates a cycle where attempts to quit often lead to temporary success followed by relapse, which many interpret as personal failure rather than recognising it as part of the neurological reality of the condition.

Addiction appears progressive because tolerance drives escalating use over time, while the brain’s reward system becomes increasingly dysregulated. What begins as recreational use gradually shifts to compulsive use as natural dopamine production diminishes and neural pathways become more deeply entrenched. The condition typically follows a predictable pattern: initial experimentation leads to regular use, then to use despite negative consequences, and finally to compulsive use where the person continues despite severe impairment in major life areas. Additionally, chronic substance use often damages the brain regions responsible for insight and self-awareness, making it harder for individuals to recognise the severity of their condition. The progressive nature is also influenced by external factors – as addiction advances, people often lose social supports, employment, and housing, creating additional stressors that fuel continued use and make recovery more challenging.

Understanding addiction when you’re not “addicted” to alcohol or other drugs

The difficulty in understanding addiction, even among people with their own compulsive behaviors, stems from several key differences in how these conditions manifest and are perceived. While behaviors like sugar consumption, social media use, or shopping can indeed activate similar dopamine pathways, they typically don’t create the same level of neurobiological hijacking that occurs with substances like alcohol, opioids, or stimulants. Addictive drugs often produce dopamine surges 2-10 times greater than natural rewards, creating more profound and lasting changes to brain structure and function. Additionally, many behavioral compulsions allow people to maintain relatively normal functioning in major life areas, whereas substance addiction typically leads to progressive deterioration across multiple domains – relationships, work, health, and legal standing.

The social and cognitive factors also create barriers to understanding. Most people can relate to losing control occasionally – eating too much dessert or spending too much time scrolling their phone – but these experiences usually involve temporary lapses that can be corrected relatively easily through willpower or environmental changes. This creates a false sense of equivalency where people think “I can stop eating cookies when I want to, so why can’t they just stop drinking?” They don’t grasp that addiction involves a qualitatively different level of brain change where the substance has become neurobiologically essential, not just psychologically preferred. There’s also often a moral lens applied to addiction that doesn’t exist for other compulsive behaviours – society tends to view overconsumption of legal, socially acceptable things as personal quirks or minor character flaws, while addiction to illegal substances or excessive alcohol use carries heavy stigma and assumptions about moral failing, making it harder to see as a medical condition requiring treatment rather than simply better self-control.

A Word On Nicotine (Tobacco Products)

Yes, nicotine absolutely does release large amounts of dopamine, making it highly addictive despite being legal and socially accepted in many contexts. Nicotine causes an increase in dopamine levels in the brain’s reward pathways, creating feelings of satisfaction and pleasure.Research shows that nicotine, like opioids and cocaine, can cause dopamine to flood the reward pathway up to 10 times more than natural rewards.

This helps explain why nicotine addiction can be so powerful and difficult to overcome, even though people often view smoking or vaping as less serious than other forms of substance addiction. Repeated activation of dopamine neurons in the ventral tegmental area by nicotine leads not only to reinforcement but also to craving and lack of self-control over intake. The addiction develops through the same basic mechanisms as other substances – as people continue to smoke, the number of nicotine receptors in the brain increases, requiring more of the substance to achieve the same dopamine response.

What makes nicotine particularly insidious is its legal status and social acceptance, which can make people underestimate its addictive potential. The rapid delivery of nicotine to the brain (within 10-20 seconds when smoked) creates an almost immediate reward that strongly reinforces the behaviour. This is why many people who successfully quit other substances still struggle with nicotine, and why nicotine addiction often serves as a gateway that primes the brain’s reward system for addiction to other substances.